
Light Sensor BobcatTM

Introduction

The Light Sensor BobcatTM is a single point module providing light level readings.

Specifications

Power:	Input Voltage Input Current Max	9 - 12V DC or AC 30mA
Dimensions:	1.3"W x 2.5"L x 0.6" Probe Cable 18"	D
Operating Temperature:	Bobcat [™] 32°F to 15 Sensor -40°F to 167°C	-

Setup

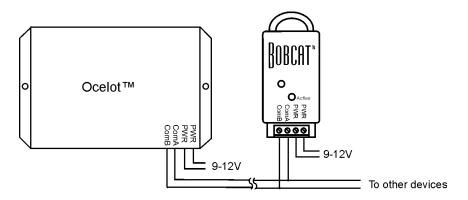


Figure 1. Typical Wiring Diagram

Note: The BobcatTM may be used outdoors but must be installed in an area so that it will not get wet!

Operation

LED Codes

ON solid – BobcatTM has not been addressed Slow Blink – BobcatTM has a valid address Fast Blink – Auto address mode active On solid, then Rapid blink - ADICONTM communications active

Parameter	Function
1	Module Address
2	Bright Threshold
3	Dark Threshold
5	Returned Data Mode 1 = Light Level, 0 = Light/Dark Mode (default)

Table 1. Light Sensor BobcatTM Parameters

Light Sensor BobcatTM Data Modes

Analog Mode

When parameter 5 is set to a 1, the Light Sensor BobcatTM will return a value (0 - 255) based on the amount of light falling on the sensor. A return value of 255 is maximum brightness.

Digital Mode

When parameter 5 is set to 0 (factory default) the Light Sensor BobcatTM will return a 1 or 0 based on comparing the light level to the threshold values. When the light level is greater than the Bright Threshold the BobcatTM will return a 1. When the light level is less than the Dark Threshold the BobcatTM will return a 0. The return value will not change until the light level has crossed a threshold and remained there for 10 seconds.

Viewing BobcatTM Data

The CPUXA access screen of C-MaxTM now has a data field to show the decimal value of data returned by a module. To view the data field, move the horizontal scroll bar all the way to the right. See the sample screen below. Data shown for a BobcatTM module will be offset by 100, that is, the value shown is 100 greater than the actual data.

👛 CPUX	A Acc	225										X
Infra-Red	<u>×</u> 10	<u>P</u> rogram File	CPU-XA Utility	<u>M</u> odule Utility	Serial M	lessages						
Starting N					Mod#	1/0#12	1/0#13	1/0#14	1/0#15	Data		-
Starting N Program	Downlo	aded OK			1	OFF	OFF	OFF	OFF	171		
Setting C Starting N					2	-						
Program	Downlo		°2		3	-						
Setting C	PUXA P	RTC			4 5	-						
Addresse Starting N					6							
					7							
					8							
		<u>C</u> le	ar	1	9]						-
	Fi	mware: V8.23,	/15	Application: V	2.85 1	Waiting fo	r Data		1	11	<u> </u>	e
TX BX	Fε	ь 19 2001		7:23:22 AM		Sunrise 6:	58 AM	Sun	set 5:56 P	м	Ter	

Setting Threshold Values

The threshold values are stored in parameters 2 and 3 (see Table 2). C-MaxTM is used to change a parameter value. Below is a sample screen of the Module parameter utility. For more information about changing module parameters see the application note *Changing Module Parameters*.

Module Parameter Access									
Mod#	Param 1	Param 2	Param 3	Param 4	Param 5	Param 6	Param 7 占]	
1	1	150	50	0	1	72	10 -	4	
2									
3									
4		Change B	Parameter D	ata	x				
5		change i			<u>^</u>				
6	Change Parameter 2 on Module 1 to:								
7	150								
8									
9			🖊 ОК	×	Cancel				
10									
11								·	
							•		
Request	ing Parameter	11	Passv	vord: **			<u>C</u> lose		

Accessing the BobcatTM data

Analog Input Example: Using a light sensor to turn outside lights on and off

Parameter 5 of the Light Sensor BobcatTM must be set to 1 to use analog mode. Now determine the threshold voltages of when you want the lights to turn on and off. For our example we will use 50 to turn the lights on and 150 to turn the lights off. The code example below shows how to turn the lights off after sunrise only if there is enough light and turn the lights off after dusk when dark enough. In this example, the more light on the sensor the smaller the analog reading.

	Line#	Program Text		Comments	Reference	1
1	1	If Time of Day is > Sunset + Ominut	e(s)	After Sunset	00C0-8078-0000	1
C-Max ^{TR}	2	And Bobcat# 0 Data is < 50		Light level is low	0C61-0000-0096	
Control	3	Then Module# 3/ Point# 1 Turn	tte ON	Tum on lights	0400-0301-0001	
Dear Line	4	If Time of Day is > Sum ise + 0 minut	After sumise	00C0-4078-0000	5	
Dalata Lia	5	And Bobcat#1 Data is > 150		Light level is high	0C60-0100-00FA	
Delete Lin	6	Then Module# 3/ Point# 1 Turn	IS OFF	Turn off lights	0400-0301-0000	
Insert Line	7	End of Program			7FE0-0000-0000	1
C THEN	 Compare B Timer (sec Variable 	C 1/0 Error Occurs	Cis≻ Cis≺ CisNOT= Cis=			
C ELSE C AND C OR C END	C Time of Da C Month C Day of Mo C Day of We C Year C Date (mm/	С mth С тек (0-6) С С	C becomes > C becomes < C becomes NOT C becomes = Data 50	-		

Example of Digital Input

Using the threshold calculated in the above example lets now use the Light Sensor BobcatTM in digital mode by setting parameter 5 to 0. Use C-MaxTM to program parameters 2 and 3 to the thresholds calculated in previous example.

/lod#	Param 1	Perem 2	Param 3	Param 4	Param 5	Param 6	Param 7	Ŀ
	1	150	50	0	1	92	10	H
2								
1								
1								
i								
i								1
,								
1								1
1								
0								
1								1
								ſ
	esting Paramete	. 10	Prov	word:		_	Dose	

Now we write a program to turn the light off when the BobcatTM returns a 1 and turn them on when the BobcatTM returns a 0.

Line#	Program Text	Comments
1	If Bobcat#1 Data becomes = 1	When it becomes light outside
2	Then turn X10 A/1 OFF	Turn off driveway lights
3	If Bobcat#1 Data becomes = 0	When it becomes dark outside
4	Then turn X10 A/1 ON	Turn on driveway lights
5	End of Program	
6		
7		

In this example the returned value will not change until the light level has crossed a threshold and remained there for 10 seconds.